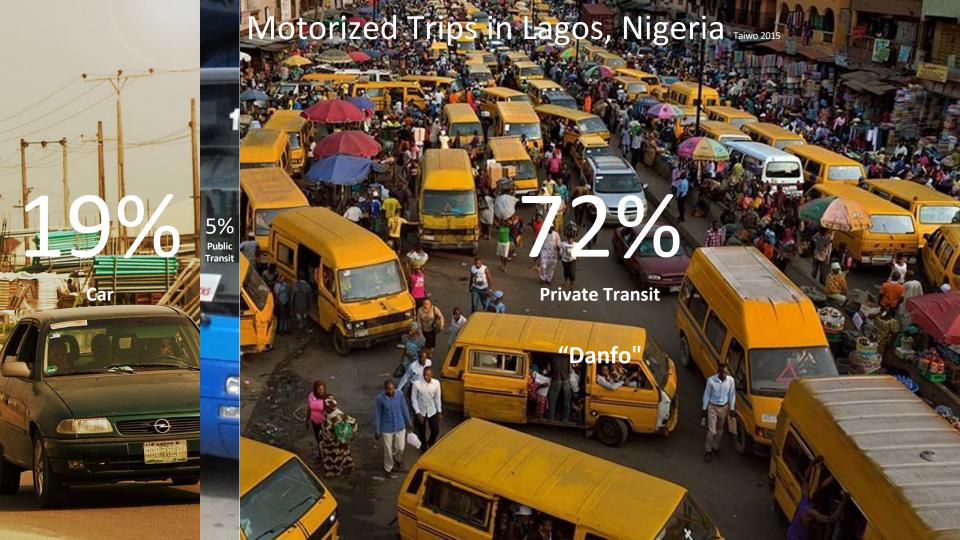
# Urban mobility in Lagos: Evaluating the Impact of a Large-Scale Transit Reform

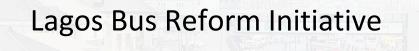
Researchers: Daniel Björkegren (Columbia University), Alice Duhaut (World Bank), Geetika Nagpal (World Bank), Nick Tsivanidis (University of California, Berkeley)








### Motorized Trips in Lagos, Nigeria Taiwo 2015






## Motorized Trips in Lagos, Nigeria Taiwo 2015









40 routes 820 new city buses

2019-2023







# **Background & Objectives**

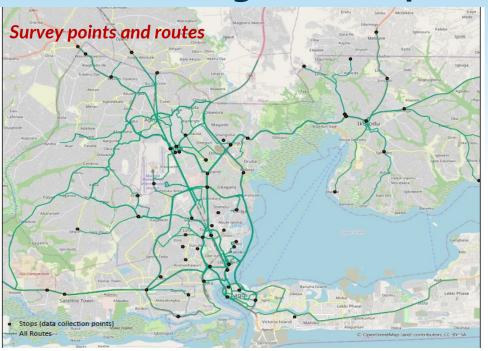
- Collaboration with LAMATA to conduct original research on mobility in Lagos to document the impact of current or planned reforms:
  - Understanding the impacts of the Bus Reform Initiative (BRI) on mobility
    - o Do danfos compete with or complement public transit?
    - o What is the response to the public transit improvement, what are the benefits to commuters?
    - o How to further regulate or support the paratransit sector?
  - Understand preferences of commuters
  - Gender-specific changes in constraints to mobility
- Generate original geospatial and survey data to feed into the updated Lagos Masterplan:
  - Mobility data
  - Danfo network and activity data
  - Parameters of commuters' valuation of time, sensitivity to price

Deeper dive into the data



## Based on Large Scale Spatial Data Effort




#### Private transit: Data collection since Oct 2020

- Danfo network census (2022):
  - 759 routes, 30,000km
- Motorpark and bus stop observation surveys:
  - Arrival and departure from 278 routes at 48 terminals + 79 bus stops
  - 15 surveys from Nov 2020 2023
  - Variables: Fares, departures, driver queues, wait times
- Danfo driver surveys
  - 854 drivers, 5 rounds
  - Variables: Demographics, trip diary, income, cost

**Congestion** (~500 routes, March 2020-Present)



## Based on Large Scale Spatial Data Effort



#### Private transit: Data collection since Oct 2020

- Danfo network census (2022):
  - 759 routes, 30,000km
- Motorpark and bus stop observation surveys:
  - Arrival and departure from 278 routes at 48 terminals + 79 bus stops
  - 15 surveys from Nov 2020 2023
  - Variables: Fares, departures, driver queues, wait times
- Danfo driver surveys
  - 854 drivers, 5 rounds
  - Variables: Demographics, trip diary, income, cost

**Congestion** (~500 routes, March 2020-Present)



## Based on Large Scale Spatial Data Effort



#### Private transit: Data collection since Oct 2020

- Danfo network census (2022):
  - 759 routes, 30,000km
- Motorpark and bus stop observation surveys:
  - Arrival and departure from 278 routes at 48 terminals + 79 bus stops
  - 15 surveys from Nov 2020 2023
  - Variables: Fares, departures, driver queues, wait times

#### Danfo driver surveys

- 854 drivers, 5 rounds
- Variables: Demographics, trip diary, income, cost

#### **Commuter:**

- Pilot Wait Time (640)
- Commuter survey (1000)
- Public transit e-ticketing data
- MTN mobility data

**Congestion** (~500 routes, March 2020-Present)



# Outline of the study

#### Research question: commuters

- What factors are important for commuters deciding whether to adopt new mode of transportation?
- 2) What is the total benefit of the BRI for commuters?
- What are the gender specific constraints on mobility

#### Research question: danfos

- 1) What is the danfo market model?
- 2) How do informal operators react to the new public option?

#### Research question: congestion and pollution

1) Do congestion and pollution improve as a result of the BRI – and by how much?

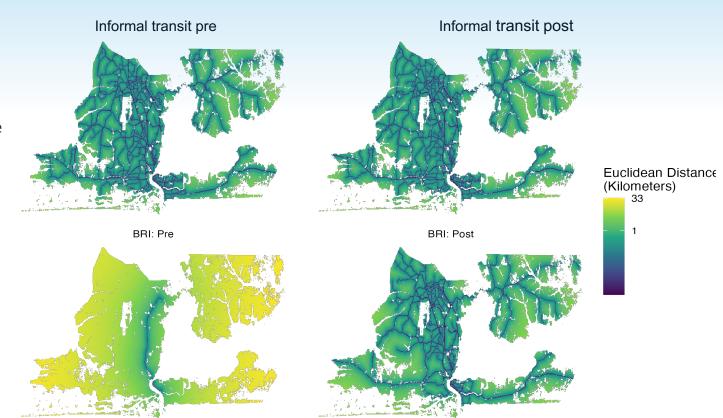


#### Data and method

- E-ticketing data
- Commuter's pilots & survey
- Mobility data from MTN
- Model of commuter choices between modes

#### Data and method

- Danfo network mapping
- Danfos drivers surveys and network observation
- Model of danfos drivers' decisions


#### Data and method

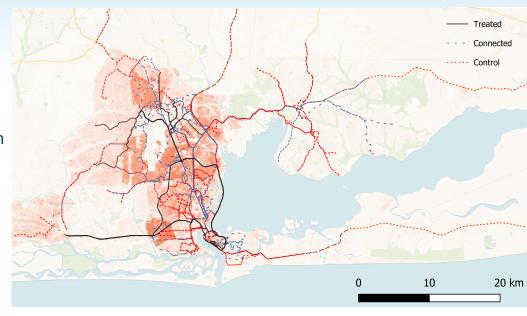
- GPS data
- Model of CO<sub>2</sub> emissions



# Public transit access increased but danfos are crucial for mobility

- BRI improved access to public transit by about 85 % within the metro area
- 50% of Lagos metro territory was within
  1.7 km from a public transit line in 2023
- In our survey, 62 % of motorized trips are taken via danfo post reform




# Evaluating the paratransit response



# Study design: quasi-experimental and experiments combined

Leveraging the roll-out plans in a staggered differences-in-differences design and high frequency data on congestion, public buses and danfo activity

- *Treated* are routes that see a new bus line open after November 2020
  - These are the lines we expect most impact
- Connected routes are routes that share a node with a treated routes
  - These are lines that may indirectly impacted, e.g. by danfo changing routes
- Controls are routes that are not part of the plans for these phases



# Paratransit response to the new bus system

#### When public transit enters a route:

- Reduced danfo frequency and fares
  - Minibus departures fall by 11% 22%
  - Suggestive evidence of 2-7% price decline due to increased competition.
- Drivers lose and switch to other routes
  - Make fewer trips and earn 11% less
  - o 23-29% decline in minibuses waiting in queue
  - More likely to switch to another route starting at the same terminal
- No detectable change in congestion

## New public transit also affects "connected" routes

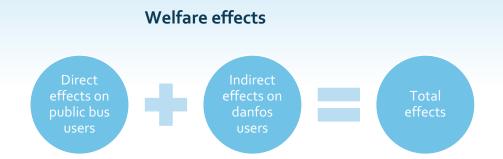
#### On danfo routes connected to BRI:

- Supply of drivers rises
  - Drivers from treated routes switch to connected-> longer danfo queues
- Prices for commuters fell:
  - Up to 8% decline in prices on routes which are connected to many treated routes.
- No change in danfo frequency
  - Already buses waiting in these queues -> departures determined by demand

Commuters' revealed preferences and stated constraints






# Recovering the time and price sensitivity of commuters

- Value of time is key to optimize scheduling
  - Ran a pilot asking 640 participants if they accepted a (random) offer to wait at a bus stop
  - Correcting for whether they are in a rush
  - The average cost of waiting for a commuter = ₩18.94/min
- Sensitivity to price is key to optimize pricing within constraints
  - Used e-ticketing data around changes in ticket price
  - Reaction to change switching mode, less trips, ...gives us the sensitivity of commuters to price
  - 10% reduction in prices leads to 6.8% more trips on the public system.



# Increased competition in transport benefits even commuters who do not use the BRI

- New system generated \$1.47 million in monthly value for commuters.
- 10% of the total commuter gains come from the response of the private sector.
  - Large number of commuters on connected routes benefit from lower prices.



- Danfo drivers lose \$0.75 million per month
   —about half the benefit to commuters.
  - Route switching among drivers drives most of these losses

# Key takeaways of the study



# **Key findings**

- The BRI increased **access to public transit** but danfos still represent 62% of the trips 42% of Lagos city is within 500 m of a danfos line, 27% within 500 m of a blue bus line.
- Introducing **new public routes benefitted commuters directly and indirectly**: due to the new routes, danfos drivers switched to ply connecting routes and lowered their prices, benefitting commuters on connected routes
- Overall benefits to commuters amount to 1.47 million USD/month. 10% of the total commuter gains come from the response of the private sector.
- Danfos losses (due lost customers or quitting working) are equivalent to ½ of these benefits.
- No clear effect on congestion based on the data from the first phase of the BRI.

# **Moving forward**



# Next steps: Key questions for urban transit integration

- Key challenge is understanding what blend of public and private transit offers the most efficient, equitable, and scalable solution for Lagos?
- Having geospatial and survey data systems in place is critical to understanding paratransit response and developing solutions.
- Do paratransit systems reorganize naturally into feeder services when public transit is introduced? Or must planners actively guide this integration?
  - What are the routes where danfos have an advantage?
  - Could danfos drivers be incentivized to become feeders or formalize?
  - What compensation, capital expenditure for fleet upgrading, training would this require?

# Thank you!

For any questions or follow-ups: gnagpal@worldbank.org